Chance-Constrained Consistency for Probabilistic Temporal Plan Networks
نویسندگان
چکیده
Unmanned deep-sea and planetary vehicles operate in highly uncertain environments. Autonomous agents often are not adopted in these domains due to the risk of mission failure, and loss of vehicles. Prior work on contingent plan execution addresses this issue by placing bounds on uncertain variables and by providing consistency guarantees for a ‘worst-case’ analysis, which tends to be too conservative for real-world applications. In this work, we unify features from trajectory optimization through risk-sensitive execution methods and high-level, contingent plan execution in order to extend existing guarantees of consistency for conditional plans to a chance-constrained setting. The result is a set of efficient algorithms for computing plan execution policies with explicit bounds on the risk of failure. To accomplish this, we introduce Probabilistic Temporal Plan Network (pTPN), which improve previous formulations, by incorporating probabilistic uncertainty and chance-constraints into the plan representation. We then introduce a novel method to the chance-constrained strong consistency problem, by leveraging a conflict-directed approach that searches for an execution policy that maximizes reward while meeting the risk constraint. Experimental results indicate that our approach for computing strongly consistent policies has an average scalability gain of about one order of magnitude, when compared to current methods based on chronological search.
منابع مشابه
Chance-Constrained Strong Controllability of Temporal Plan Networks with Uncertainty
This works presents a novel approach for determining chance-constrained strong controllability of Temporal Plan Networks with Uncertainty (TPNU) by framing it as an Optimal Satisfiability Problem (OpSAT).
متن کاملChance-Constrained Probabilistic Simple Temporal Problems
Scheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maxi...
متن کاملStochastic Approach to Vehicle Routing Problem: Development and Theories
Stochastic Approach to Vehicle Routing Problem: Development and Theories Abstract In this article, a chance constrained (CCP) formulation of the Vehicle Routing Problem (VRP) is proposed. The reality is that once we convert some special form of probabilistic constraint into their equivalent deterministic form then a nonlinear constraint generates. Knowing that reliable computer software...
متن کاملConstrained consumable resource allocation in alternative stochastic networks via multi-objective decision making
Many real projects complete through the realization of one and only one path of various possible network paths. Here, these networks are called alternative stochastic networks (ASNs). It is supposed that the nodes of considered network are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of t...
متن کاملResolving Over-Constrained Probabilistic Temporal Problems through Chance Constraint Relaxation
When scheduling tasks for field-deployable systems, our solutions must be robust to the uncertainty inherent in the real world. Although human intuition is trusted to balance reward and risk, humans perform poorly in risk assessment at the scale and complexity of real world problems. In this paper, we present a decision aid system that helps human operators diagnose the source of risk and manag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014